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Diffusion and Viscosity Equations of State for a 
Lennard-Jones Fluid Obtained from Molecular 
Dynamics Simulations 
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Equilibrium molecular dynamics simulations were perlbrmed Ibr a Lennard 
Jones Iluid at 171 conditions spanning the range 0~<p+ ~<1.0 and 0.8~ 
T'  ~< 4.0. The Einstein o r  naean-sqttared-displacement [MSDt l'ornlt, la was used 
to compute tile self-diffusion coefficient and a recently suggested, modilied MSD 
equation was used to compute the shear viscosity at each condition. Analytical 
equations Ibr the self-diffusion and viscosity coefficients were then fitted to the 
simulated datz, as polynomial functions of p + and T ~. The resultant smoothing 
equations correlate the sinlulated data quite well and agree with argon experi- 
mental data within the uncertainty of the data. 
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1. I N T R O D U C T I O N  

The L e n n a r d - J o n e s  (L J) po ten t ia l  has been widely used to s tudy the 
behav io r  of  s imple fluids. A l though  the LJ poten t ia l  is k n o w n  to be s impler  
in funct ional  form than  most  real in te rmolecu la r  in teract ions ,  it never-  
theless cap tures  much of  the essential  physics  of  s imple fluids. It is 
sufficiently accura te  that  it p rovides  a convenient  mode l  for test ing l iquid 
theor ies  and  inves t igat ing fluid phenomena .  Because of  the impor t ance  of  
this mode l  in deve lopmen t  of  theory  and its abi l i ty  to mode l  the ma in  
charac ter i s t ics  of  s imple fluids, m a n y  LJ s imula t ions  have been per formed 
and the s imula ted  p r e s s u r e - d e n s i t y - t e m p e r a t u r e  surface has been fitted to 
ana ly t ica l  equa t ions  of  state. Johnson  et al. [ 1 ] cite 11 such a t t empts  and 
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report a 32-parameter equation of state for the LJ fluid based on a modified 
Benedict-Webb-Rubin equation. Regression of this LJ equation of state 
included new simulations at saturation, and it therefore does a better job 
of correlating phase equilibrium than two previous versions [ 2, 3 ]. 

There have also been a significant number of simulations performed 
for LJ fluids in order to obtain the viscosity and self-diffusion coefficient 
(see, e.g., Refs. 4-7). To our knowledge, however, no general correlation of 
simulated diffusivities and viscosities has been reported similar to the equa- 
tions of state mentioned above. One of the purposes of this study is to 
provide such smoothing equations that can then be used to test theories 
and to serve as reference equations for later development of perturbation 
techniques. 

The second objective of this study was to test the efficacy of using a 
recently proposed mean-squared-displacement (MSD) method for computing 
viscosity. While self-diffusion coefficients have generally been obtained from 
simulations using the MSD algorithm, researchers have obtained viscosities 
exclusively using the correlation function (CF) approach. Although 
standard texts present both the MSD and the CF approaches as equivalent 
methods for obtaining transport properties from molecular simulations, 
viscosities obtained from MSD calculations have not been reported in the 
literature. While standard treatises generally do not mention any problems 
with the MSD approach, Erpenbeck [8] and Haile [9] both suggest that 
only the self-diffusion coefficient can be obtained from standard MSD 
formulas when periodic boundary conditions (PBC) are employed in the 
simulation. However, Haile proposed a modified MSD method that is 
compatible with PBC. This modified MSD method is tested in this study 
and used to obtain the values from which the final viscosity equation was 
regressed. 

2. MOLECULAR DYNAMICS (MD) SIMULATIONS 

2.1. Methodology 

Standard simulation texts [10-13] describe two approaches for 
obtaining transport coefficients from equilibrium molecular dynamics 
simulations. In the CF approach, the transport coefficient is obtained from 
the appropriate Green-Kubo (GK) relation for the decay of correlations 
[ 10-14]. A general form of the Green-Kubo equation for a transport coef- 
ficient K can be written as 

K=-~ (,4(t) ,4(0)) dt (1) 
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Table I. EMD Variables for Calculating Pure Component Transport Coefficients 

K G ,4(t) A(t) 

D l v~(t) r,(t) 
N N 

q k T V ~ p ~j rf~, 
P771 

i < l  i 

where the brackets indicate the expectation value, G is a property-specific 
factor, A is a mechanical property of the simulation, t is time, and ,4 is the 
time derivative of A. The latter quantities are defined in Table I for the self- 
diffusion coefficient, D, and shear viscosity, 1/. 

In the MSD approach, the transport coefficient is calculated from the 
appropriate Einstein relation that shows how the squared displacement of 
the appropriate variables increases in time. The general Einstein formula 
for a transport coefficient K can be written as 

1 
K = ~ ( [ A ( t )  - A(0)] 2) (2) 

ztJt 

Helfand [ 14] and others [9, 13] have shown that Eq. (2) can be derived 
from Eq. (1) and therefore that the two methods are equivalent, at least for 
nonperiodic systems. Though the MSD method is commonly used to 
obtain self-diffusion coefficients, it has not been used for other transport 
properties [ 8 ]. The Einstein formulas (Helfand formalism) are still appealing 
because of their programming ease and the numerical accuracy obtainable 
from a linear least-squares fit of MSD versus time. Haile [9]  recently 
proposed a modification of the MSD method to calculate viscosity that 
avoids the problems created by the periodic boundary conditions, but we 
know of no simulations that have used that method. We report here 
viscosities obtained using this new MSD algorithm and its validation. 

2.2. S i m u l a t i o n  D e t a i l s  

All production runs were NVT simulations performed on 256 LJ 
particles. The LJ potential was truncated at 4.0 a. A fifth-order predictor-  
corrector integration method was used with a dimensionless time step of 
t + = 0.003 for all but the two highest densities and temperatures; the latter 
conditions required a shorter time step of t + =0.001. The runs were 
allowed to equilibrate for 50,000 time steps, after which information for the 
MSD equations was collected for the next 180,000 to 2,000,000 steps, 
depending upon the density and temperature. 
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Periodic boundary conditions were used for the mechanics of the 
simulation in the normal manner, but MSD calculations were based on the 
unfolded positions of the molecules. This was readily done by using an 
accumulator into which the displacement for each time step was summed 
before application of the periodic boundary conditions. 

A multiple origin method was used to calculate MSD values in 
parallel. This was particularly important for r/ in order to improve the 
statistics. This can be seen from the relationships in Table I. Self diffusion 
is seen to be a single-particle property--a MSD value is computed for each 
particle. On the other hand, r/ is a multiparticle or system property, and 
a sum over all particles is required to obtain a single value of A to be 
used in Eq. (2). Self-diffusion computations are inherently more accurate 
because they include a factor of N more MSD values. Implementation of 
multiple time origins permits considerable improvement of the statistics for 
~1 without significant addition to the overall CPU time. This was done by 
overlapping or nesting the initiation of MSD calculations such that many 
MSD values were computed in parallel. To gain maximum statistical 
advantage, the parallel MSD calculations were generally separated by 
enough time steps that consecutive time origins were independent. At the 
lowest densities, where it takes several thousand time steps for the correla- 
tions to die out, initiation of the MSDs was made before loss of complete 
correlation in order to keep the total length of the simulation tractable. 
This did not cause any noticeable deterioration in the statistics of the com- 
puted transport coefficients. Specifications on the duration and spacing of 
various parts of the simulations are shown in Fig. 1, which is keyed to 
Table II. 

Additional statistical accuracy was achieved by computing MSD 
values for each appropriate Cartesian coordinate and including these 
values in the averages. This gives an additional factor of three for D, while 

0 

1 
q 

etc. , 

/ 

�9 d ~ number of time steps 
/ 

Fig. 1. Typical parts of the EMD simulation including equi- 
libration {at, Knudsen truncation {b), separation of MSD time 
origins (c), length of MSD data accumulation (d), total 
simulation length {e), and number  of time origins (fl. 
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Table II. Number of Time Steps lin Thousands) Used for Each Part of the Simulations 

T + p + a" b" c" d" e" ff 

0.80 1 . 2 5  0.05-0.10 50 14 1.0 22 2021 2 

0.15-0.30 50 1.0 0.5 3.5 1003 2 

0,40-0.50 50 0,25 0.25 2.25 502 2 

0.60-0.70 50 0.20 0,20 2.2 402 2 

0.80 1.0 50 0.06 0.06 2.0 182 3 

1.30~4.00 0.05 50 14 1.0 8 2021 2 

0.10-0.15 50 1 0.5 2.5 1003 2 

0.20 50 0.25 0.25 2 502 2 

0.30-0,50 50 0.20 0,20 2 402 2 

0.60 1.00 50 0.06 0.06 2 182 3 

" See Fig. I Ibr a key to the letters denoting parts of the simulation. 

for ~l it yields an extra factor of six. Thus, the actual implementation of the 
Einstein equations of Table I into the code was done in accordance with 

1 3 
O = ~ "  E ( [ r z , / ( t ) - - r ~ i  ( 0 ) ] 2 )  (3) 

: l = [  

q - ( p ~ , ( t )  r / ~ A t )  - p ~ , ( O )  r1~,(0)) (4) 
1 2 V k T t  ~ = l  /~=l ~ I 

I x :~ l h  

where r~ and r/~ represent any of the three Cartesian coordinates, k is 
Boltzmann's constant, p~ represents the ~ component of the momentum 
vector, V is volume, and subscript i refers to molecule i. 

Computation of the transport coefficients was done using a least- 
squares fit of MSD versus t in accordance with Eqs. (3) and (4). However, 
data at very short times were not included where the displacement is due 
mainly to the free-flight or Knudsen diffusion of the particles. The number 
of time steps excluded for this reason depended upon the density and tem- 
perature used in the simulation, but it is also reported in Table II. 

2.3. Modification of the Einstein Method for Viscosity 

Haile [9] and Erpenbeck [8] have shown that the Green-Kubo and 
Einstein equations for viscosity are not equivalent for periodic systems even 
with unfolded boundary conditions. Haile shows that r/can, however, be 
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evaluated indirectly using the Einstein method. The equality of Eqs. 1) and 
(2) requires that the MSD can be obtained from 

~0 ~ 
MSD=([A( t ) -A(O)]  2) = (A(t)A(o)> dt (5) 

where the appropriate quantities for A and its time derivative are gxven in 
Table I. This method was implemented in this study by computing 

N N 

A = ~  P~iPl~i+~F~ir/~i (ot~fl) (6) 
i 111 i i 

where F is force, at each time step and then by using Simpson's rule to 
integrate numerically ~ A(t). At0)dt to obtain indirectly the shear MSD 
at time r. The MSD calculated in this fashion was then treated the same 
as that for D; i.e., the final value of r/was determined from the slope of the 
MSD versus time curve. 

2.4. Benchmarks 

Validity of the code was checked by performing benchmark studies. 
The results are shown in Fig. 2 as a function of dimensionless number 
density, p +. Agreement with literature values was generally within _+6% 

i I . 
cJ 

~ o eL c 

l �9 

,, �9 

.to 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 '~ 0 1A 
p+ 

Fig. 2. Benchmark studies at T § =1.863 
showing percentage deviation of literature 
values [5 ]  from the values simulated in this 
work for D t O )  and ~1. (i-xl) Ar data; (11) CF 
approach from EMD; (F-l) nonequilibrium 
molecular dynamics simulations. 
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with no noticeable bias. All results are given in terms of variables made 
dimensionless (superscript + ) using the LJ parameters, e and 0., and the 
molecular mass, m; namely, 

T+ = --,kTe P+ = --,P0.3c P+ =/90"3 =N0.3 

h/ ~ r/+ 0"2 

D + = D  m0.2 , =tlx//--~e 

(8) 

2.5. Simulation Results 

The simulations were run at regular grid points in the p T  plane that 
spanned the domain 0.05 ~< p § ~< 1.00 and 0.80 ~< T + ~< 4.00. Figure 3 shows 
the location of the simulation points relative to the LJ phase dome 
calculated from the most recent LJ equation of state [ 1 ]. Simulations were 
performed in the two-phase region only to provide continuity of states 
between vapor and liquid densities in anticipation of correlating the data 
into polynomial equations. Values in the two-phase region have no other 
significance. Results for D and r/at each of the 171 state points are reported 
in Tables III and IV. The value in boldface type is the average value of 
the transport coefficient obtained by averaging over all of the multiple 
time origins. Standard deviations, estimated from block averages over each 
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Fig. 3. Conditions relative to the LJ phase 
dome at which simulations were performed. 
Simulations were not performed at points 
marked with an open square because they lie 
in the solid region. 
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1000 time origins, are reported in this table directly below the average 

value in n o r m a l  type. 

3. LJ  T R A N S P O R T  E Q U A T I O N S  

The s imula t ion  results, combined  with C h a p m a n - E n s k o g  values at 
p = 0, were used to regress coefficients in equa t ions  of the form 

6 b.ji )i 
K = K o +  Z ~ T+) , i - t , (P  + (8) 

i = 1  I | ( " = 

where K is p + D  + for self diffusion and  In q + for shear viscosity; Ko is 
the C h a p m a n - E n s k o g  low-densi ty value. We have also correlated the 

C h a p m a n - E n s k o g  collision integrals as a funct ion of tempera ture  so that  

the final equa t ions  may be wri t ten simply as 

D+ = !  + ( = - . - _  ,, 
P+ i= |  .i=l 

p Do =8 / ,~ +)j I (9) 

i= |  j= l  " ( T + ) I j  | '  

5 - I  

qc~- = 5 ~ ( / ~ t  coi(T+ , / -  ' )  (10) 

Table V. Constants tot Use in the Transport Equations 

Property j ~1 ~ hi3 ~4 t% 

D.  I -2.19672 6.86168 -9.18961 3.8867 3.3667 
2 15.6693 - 59.1879 78.9642 - 33.6443 - 3.7718 
3 -48.8200 200 .229  -272.009 117.554 2.6692 
4 75.3823 -32[.603 441.017 - 192.079 -0.9953 
5 - 55.5212 242.752 - 335A46 146.837 0.1863 
6 15.1673 - 67.8152 94.3826 -41.6192 -0.0138 

q+ I - 7.53814 36 .0319  -47.0432 19.7791 2.8745 
2 66.0342 -299.373 430.291 -191.670 -2.2065 
3 -220.881 10.67.97 - 1575.25 725.006 0.9158 
4 334.883 -1638.92 2445.08 -1140.09 - 0.1960 
5 -226.756 1112.30 -1669.43 783.084 0.0160 
6 52.4394 -255.199 380.704 - 176.589 --  
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where the coefficients big and ca/for each property are tabulated in Table V. 
These transport equations adequately represent the simulated data over the 
domain 0 ~< p +~< 1.0 and 0.8 ~< T+~< 4.0. The average absolute deviation 
(AAD) between the simulated D values and those correlated by Eq. (10) 
was 3.14% (2.06% excluding points in the two-phase region) and the bias 
was +1.85% (+0.48% excluding points in the two-phase region). For 
viscosity, the AAD was 4.34 % (4.40 % excluding two-phase points) with a 
bias of -0 .47 % ( - 0.30 % excluding two-phase points). 

4. EFFECTIVENESS OF THE DEVELOPED TRANSPORT 
EQUATIONS 

As mentioned, the regressed transport equations should be valid over 
the domain bounded by 0~<p+~< 1.0 and 0.8~< T + ~<4.0; they should not 
be used outside that range. The average absolute deviations mentioned 
above are probably a reasonable estimate of the uncertainties inherent in 
the equations; about 3 % for diffusion and about 4.5 % for viscosity. 

We thought it also informative to compare values calculated from 
the various LJ equations with correlations of experimental argon data 

Table Vl. Percentage Deviation of ~1, Calculated from Eq. (10), from a Correlation of 
Argon Viscosities" [ I5, 16] 

P (bar) 

T ( K ) 1 20 40 100 200 400 600 1000 

120 -1.51 0.18 -2 .07  -3.51 -2 .95 0.83 
(0.0024) (0.7021) (0.7114) (0.7344) (0.7630) (0.8037) (0.8433) (0.8738} 

150 -0 .65 -6 .60  --5.04 2.62 3.21 3.12 3.56 4.37 
(0.0019) 10.0457) (0.1264) (0.5800) (0.6499) (0.7187) (0.7613) 10.8193) 

200 0.25 -3 .56  --6.68 -6.31 -0 .82  6.31 7.69 7.63 
(0.0015) (0.0307) (0.0657) (0.2032) (0.4210) [0.5759) (0.6464) (0.7288) 

250 0.05 -2 .55 --4.77 -8 .56  -7.61 1.45 5.80 9.03 
(0.0012) (0.0238) (0.0487) (0.1303) (0.2694) 10.4509) (0.5447) (0.6494) 

300 -0.31 --2.38 --4.15 -7 .32  -7 .55 - 1.01 1.60 6.85 
(0.0010) (0.0195) (0.0394) (0.1009) (0.2023) (0.3622) (0.4618) (0.5805) 

350 - 1 .24  -2 .82  --4.06 -6 .53  -7 .78  -4 .42  --0.39 4.32 
(0.0008) (0.0166) (0.0333) (0.0837) (0.1650) (0.3013) (0.3983) (0.5226) 

400 -- 1 .46 -2 .82  --3.88 -6 .06  --7.45 -5 .73 -2 .49 2.63 
(0.0007) (0.0145) (0.0289) (0.0719) (0.1407) (0.2592) (0.35031 (0.4736) 

450 - 1 .59 -2 .80  --3.80 -5 .93 --7.42 -6 .55 --3.92 1.44 
(0.0006) (0.0128) ~0.0256) (0.0633) (0.1233) (0.2283) (0.3133) (0.4334) 

"The  lower entry is the reduced density corresponding to the given T and P. 
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available in the literature. The LJ parameters used for this comparison 
were a=3.418 A and e/k= 124.0 K [11]. Table VI shows the percentage 
deviations of the viscosity equation obtained over a range of densities and 
temperatures from correlated argon data [ 15, 16]. The overall AAD and 
bias at the compared conditions were 5.3 and -2.2 %, respectively. While 
this is within the combined uncertainties of the experimental correlation 
(about 4%) and the transport equation (4.5 %), we do not imply that Ar 
is a LJ fluid. Argon densities actually deviate from the LJ equation of state 
by about 2% in the liquid region, but the comparison does provide an 
independent check on the validity of the new MSD computations. 

5. CONCLUSIONS 

EMD simulations of the LJ fluid were performed at 171 state points 
from which self-diffusion and shear viscosity coefficients were computed 
using the MSD or Einstein relations. These simulated values were used to 
obtain smoothing equations for the LJ fluid as a function of temperature 
and density over the range 0~<p+~< 1.0 and 0.8~<T + ~<4.0. The newly 
developed LJ transport equations correlated the simulated values adequately 
and represent Ar experimental data quite well. We conclude that the 
modified Einstein method suggested by Haile [9] is a viable means for 
obtaining accurate viscosity values. Finally, we should mention that 
thermal conductivity and bulk viscosity can also be calculated from Haile's 
modified Einstein approach. 
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