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Diffusion and Viscosity Equations of State for a
Lennard—Jones Fluid Obtained from Molecular
Dynamics Simulations
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Equilibrium molecutar dynamics simulations were performed for a Lennard-
Jones {fluid at 171 conditions spanning the range 0<p* <1.0 and 08<
T' <£4.0. The Einstein or mean-squared-displacement (MSD) formula was used
to compute the seli-diffusion coeflicient and a recently suggested. modified MSD
equation was used to compute the shear viscosity at each condition. Analytical
equations for the self-diffusion and viscosity coeflicients were then fitted to the
simulated data as polynomial functions of p* and T *. The resultant smoothing
equations correlate the simulated data quite well and agree with argon experi-
mental data within the uncertainty of the data.
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1. INTRODUCTION

The Lennard-Jones (LJ) potential has been widely used to study the
behavior of simple fluids. Although the LJ potential is known to be simpler
in functional form than most real intermolecular interactions, it never-
theless captures much of the essential physics of simple fluids. It is
sufficiently accurate that it provides a convenient model for testing liquid
theories and investigating fluid phenomena. Because of the importance of
this model in development of theory and its ability to model the main
characteristics of simple fluids, many LJ simulations have been performed
and the simulated pressure-density—temperature surface has been fitted to
analytical equations of state. Johnson et al. [ 1] cite 11 such attempts and
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report a 32-parameter equation of state for the LJ fluid based on a modified
Benedict-Webb—Rubin equation. Regression of this LJ equation of state
included new simulations at saturation, and it therefore does a better job
of correlating phase equilibrium than two previous versions [2, 3].

There have also been a significant number of simulations performed
for LJ fluids in order to obtain the viscosity and self-diffusion coefficient
(see, e.g., Refs. 4-7). To our knowledge, however, no general correlation of
simulated diffusivities and viscosities has been reported similar to the equa-
tions of state mentioned above. One of the purposes of this study is to
provide such smoothing equations that can then be used to test theories
and to serve as reference equations for later development of perturbation
techniques.

The second objective of this study was to test the efficacy of using a
recently proposed mean-squared-displacement (MSD) method for computing
viscosity. While self-diffusion coefficients have generally been obtained from
simulations using the MSD algorithm, researchers have obtained viscosities
exclusively using the correlation function (CF) approach. Although
standard texts present both the MSD and the CF approaches as equivalent
methods for obtaining transport properties from molecular simulations,
viscosities obtained from MSD calculations have not been reported in the
literature. While standard treatises generally do not mention any problems
with the MSD approach, Erpenbeck [8] and Haile [9] both suggest that
only the self-diffusion coefficient can be obtained from standard MSD
formulas when periodic boundary conditions (PBC) are employed in the
simulation. However, Haile proposed a modified MSD method that is
compatible with PBC. This modified MSD method is tested in this study
and used to obtain the values from which the final viscosity equation was
regressed.

2. MOLECULAR DYNAMICS (MD) SIMULATIONS

2.1. Methodology

Standard simulation texts [10-13] describe two approaches for
obtaining transport coefficients from equilibrium molecular dynamics
simulations. In the CF approach, the transport coefficient is obtained from
the appropriate Green-Kubo (GK) relation for the decay of correlations
[10-14]. A general form of the Green—-Kubo equation for a transport coef-
ficient K can be written as

1 o

K== jo CA(1) A(0)> dt (1)
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Table . EMD Variables for Calculating Pure Component Transport Coefficients
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where the brackets indicate the expectation value, G is a property-specific
factor, A is a mechanical property of the simulation, ¢ is time, and A is the
time derivative of A. The latter quantities are defined in Table I for the self-
diffusion coefficient, D, and shear viscosity, #.

In the MSD approach, the transport coefficient is calculated from the
appropriate Einstein relation that shows how the squared displacement of
the appropriate variables increases in time. The general Einstein formula
for a transport coefficient K can be written as

1 >
K=§—G7<[A(t)—A(0)] > (2)

Helfand [14] and others [9, 13] have shown that Eq. (2) can be derived
from Eq. (1) and therefore that the two methods are equivalent, at least for
nonperiodic systems. Though the MSD method is commonly used to
obtain self-diffusion coeflicients, it has not been used for other transport
properties [ 8]. The Einstein formulas (Helfand formalism) are still appealing
because of their programming ease and the numerical accuracy obtainable
from a linear least-squares fit of MSD versus time. Haile [9] recently
proposed a modification of the MSD method to calculate viscosity that
avoids the problems created by the periodic boundary conditions, but we
know of no simulations that have used that method. We report here
viscosities obtained using this new MSD algorithm and its validation.

2.2. Simulation Details

All production runs were NVT simulations performed on 256 LJ
particles. The LJ potential was truncated at 4.0 . A fifth-order predictor-
corrector integration method was used with a dimensionless time step of
t* =0.003 for all but the two highest densities and temperatures; the latter
conditions required a shorter time step of :*=0.001. The runs were
allowed to equilibrate for 50,000 time steps, after which information for the
MSD equations was collected for the next 180,000 to 2,000,000 steps,
depending upon the density and temperature.
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Periodic boundary conditions were used for the mechanics of the
simulation in the normal manner, but MSD calculations were based on the
unfolded positions of the molecules. This was readily done by using an
accumulator into which the displacement for each time step was summed
before application of the periodic boundary conditions.

A multiple origin method was used to calculate MSD values in
parallel. This was particularly important for » in order to improve the
statistics. This can be seen from the relationships in Table 1. Self diffusion
is seen to be a single-particle property—a MSD value is computed for each
particle. On the other hand, # is a multiparticle or system property, and
a sum over all particles is required to obtain a single value of 4 to be
used in Eq. (2). Self-diffusion computations are inherently more accurate
because they include a factor of N more MSD values. Implementation of
multiple time origins permits considerable improvement of the statistics for
n without significant addition to the overall CPU time. This was done by
overlapping or nesting the initiation of MSD calculations such that many
MSD values were computed in parallel. To gain maximum statistical
advantage, the parallel MSD calculations were generally separated by
enough time steps that consecutive time origins were independent. At the
lowest densities, where it takes several thousand time steps for the correla-
tions to die out, initiation of the MSDs was made before loss of complete
correlation in order to keep the total length of the simulation tractable.
This did not cause any noticeable deterioration in the statistics of the com-
puted transport coefficients. Specifications on the duration and spacing of
various parts of the simulations are shown in Fig. 1, which is keyed to
Table II.

Additional statistical accuracy was achieved by computing MSD
values for each appropriate Cartesian coordinate and including these
values in the averages. This gives an additional factor of three for D, while

A\

number of time steps

Fig. 1. Typical parts of the EMD simulation including equi-
libration (a). Knudsen truncation (b), separation of MSD time
origins (c), length of MSD data accumulation (d). total
simulation length (e), and number of time origins ([).
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Table II. Number ol Time Steps (in Thousands) Used for Each Part of the Simulations

T* pt a¢ b ¢ d¢ e f
0.80-1.25 0.05-0.10 50 14 1.0 22 2021 2
0.15-0.30 50 1.0 0.5 35 1003 2

0.40-0.50 50 0.25 0.25 225 502 2

0.60-0.70 50 0.20 0.20 22 402 2

0.80-1.0 50 0.06 0.06 2.0 182 3

1.30-4.00 0.05 50 14 1.0 8 2021 2
0.10-0.15 50 1 0.5 2.5 1003 2

0.20 50 0.25 0.25 2 502 2

0.30-0.50 50 0.20 0.20 2 402 2

0.60-1.00 50 0.06 0.06 2 182 3

*See Fig. 1 for a key to the letters denoting parts of the simulation.

for 5 it yields an extra factor of six. Thus, the actual implementation of the
Einstein equations of Table I into the code was done in accordance with

R 2
D= T (Lrd0) = O ?

x=1

1 LR N 2
’7=W Z Z <{ 2 (pii(t)r/ii({)-pai(O)rﬁi(o))} > 4

a=1 fi=1 i=1

(x#f)
where r, and r, represent any of the three Cartesian coordinates, k is
Boltzmann’s constant, p, represents the a component of the momentum
vector, V is volume, and subscript i refers to molecule i.

Computation of the transport coefficients was done using a least-
squares fit of MSD versus ¢ in accordance with Egs. (3) and (4). However,
data at very short times were not included where the displacement is due
mainly to the free-flight or Knudsen diffusion of the particles. The number
of time steps excluded for this reason depended upon the density and tem-
perature used in the simulation, but it is also reported in Table IL

2.3. Modification of the Einstein Method for Viscosity

Haile [9] and Erpenbeck [8] have shown that the Green-Kubo and
Einstein equations for viscosity are not equivalent for periodic systems even
with unfolded boundary conditions. Haile shows that » can, however, be
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evaluated indirectly using the Einstein method. The equality of Eqgs. (1) and
(2) requires that the MSD can be obtained from

MSD = (LA(1) = 4(0)*> = [ * CA(1) 4(0)) dr (5)

where the appropriate quantities for 4 and its time derivative are given in
Table 1. This method was implemented in this study by computing

N N
A=Z pj;pm‘FZinr/ﬁ (a# ) (6)

where F is force, at each time step and then by using Simpson’s rule to
integrate numerically {5 A(7)- A(0) dr to obtain indirectly the shear MSD
at time 7. The MSD calculated in this fashion was then treated the same
as that for D; i.e., the final value of  was determined from the slope of the
MSD versus time curve.

2.4. Benchmarks

Validity of the code was checked by performing benchmark studies.
The results are shown in Fig.2 as a function of dimensionless number
density, p*. Agreement with literature values was generally within +6%
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Fig. 2. Benchmark studies at T =1.863
showing percentage deviation of literature
values [5] from the values simulated in this
work for D (@) and #. ([X]) Ar data; (B) CF
approach from EMD: (0O) nonequilibrium
molecular dynamics simulations.
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with no noticeable bias. All results are given in terms of variables made
dimensionless (superscript +) using the LJ parameters, ¢ and o, and the
molecular mass, m; namely,

T’ e

N
— g3

A~
I
h~Y
]
I

(8)
D*=D |—s, n*=n

2.5. Simulation Results

The simulations were run at regular grid points in the pT plane that
spanned the domain 0.05 < p* <1.00 and 0.80 < T* <4.00. Figure 3 shows
the location of the simulation points relative to the LJ phase dome
calculated from the most recent LJ equation of state [ 1]. Simulations were
performed in the two-phase region only to provide continuity of states
between vapor and liquid densities in anticipation of correlating the data
into polynomial equations. Values in the two-phase region have no other
significance. Results for D and # at each of the 171 state points are reported
in Tables III and IV. The value in boldface type is the average value of
the transport coefficient obtained by averaging over all of the multiple
time origins. Standard deviations, estimated from block averages over each
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Fig. 3. Conditions relative to the LJ phase
dome at which simulations were performed.
Simulations were not performed at points
marked with an open square because they lie
in the solid region.



Rowley and Painter

1116

-soe1oAr N20|q (JSIN 0001 UC Pastq UONBIADP PJEpURIS 3Y1 §I YIRdUI3pUN 1aqQuInu oyl @ 1o an[ra a5riaar aify st oy uo Jaquinu 29v)p[oq Y] ,

‘prjos ayy sjyuasaxdar uoifal paxoq Jomol tuoidalr aseyd-om1 “1odea—pinbif sy syuasaidas uordar paxoq saddn ayL

000 1000 1000 1000 1000 1000
wio 1710 6600 LLOO 650°0 910’0 plies plos plos PlioS plfos plloS (U]
<000 100°0 000 U0 1000 10070 100°0 10070 0000 0000
0LI°0 Lr1°0 wnro L60°0 LLOO 090°0 900 LEOO F£00 €00 Pllos pios S6'0
1000 £000 [V conn o0'0 1000 100°0 1000 100°0 1000 100°0 0000
10T°0 LLT'O 6¥1°0 6110 L60°0 6L0°0 £90°0 1500 8r0°0 9¥ 0’0 oro’0 re0°0 06’0
000 100°0 000 100°0 1000 100°0 000 1000 1000 1000 100°0 1000 0000
10 0170 6L1°0 8F1°0 1210 wiro 1800 890°0 900 1900 €500 Lr00 SE00 $8°0
SO00 <000 €000 000 1000 [41N0] 100°0 100°0 1000 1000 000 1000 1000
£87°0 8FT°0 pIT0 8L1°0 8¥1°0 STI'o £01°0 880°0 ¥80°0 6,00 woo 5900 8900 080
6000 000 000 P00 000 000 1000 <000 100°0 0o 1000 10060 1000
08¢°0 170 9670 6rT0 L1T0 L8T°0 9s1'0 LETO w®ho Pra N} 9LI'0 S01°0 80°0 0L0
£00°0 8000 SO0'0 9000 1600 LO00 £00°0 €000 <000 <000 000 1000 000
€050 €S0 POy o 6Fe0 00£°0 970 YIzo 861°0 161°0 981°0 wi'e LS1°0 1zro 09°0
8000 €000 OO0 FOU0 £0n’n 000 000 D0 oo 100°0 oo £00°0 1000
189°0 0190 1$$°0 yLPO o L9E°0 8I£°0 870 L0 970 o 9170 AN 050
9000 9000 9000 FOO0'0 €000 £00°0 £00'0 [ 1000 000 000 000 000
£26°0 SE8°0 [4IA 1 s9°0 LLSO rIso PrE0 w6e0 08€°0 £9¢°0 0gL’0 187°0 o or'o
HO0 3000 100 900°0 SO0 0100 £000 OO0 £00°0 100 £00°0 0000 1000
L1g’] LoT'1 LLO'T 196°0 8780 £EL0 9£9°0 §85°0 0s<°0 9Ty 890 8LE0 £L1°0 0£°0
800°0 000 1000 100°0 £00°0 £00°0 1000 000 1000 SO0'0 000 000 000
ST 6161 80L°1 wrl 86T°1 6¥1°l 886°0 LS80 098°0 9180 0zL0 6L5°0 68T°0 0o
S00°0 8100 1070 9000 LOOQ 9000 000 800°0 £00°0 900°0 0100 0070 LO00
8167 L99T 98t°T 180°7 P8l €191 6Lt"] 961°1 (22N Soi’1 +86°0 €180 SSt°0 Sro
L0 o 2100 0100 o0 Q000 £00°0 LOUO oo oo L0070 S0 000
oISy 180y 9t SLY'E 6SLT e 6r0°T 86L°1 65L°1 1891 0£S°1 LEe'] $79'0 0o
900°0 8100 980°0 LLOO 9900 6000 000 6E0°0 9100 L0040 OO0 6200 LO00
6£T°6 7958 0T9'L §789 €LSS 656'F wly P69t LISt 1Zy'e £60°t 69L°T LpLl SO0
00y 0st 00t 06T 0c 081 ¢l o'l Tl 0Tl orl ool 080 o
v
L 10) 9 nsay uonemuis  Cpy| dqel



1117

ty of a Lennard-Jones Flui

iscosi

Diffusion and V

‘So8RI9AR 320]q SN 000! UO Paskq UONRIAZP PIRPURIS 3U ST (IRAUIAPUN 1aquInu ay) b/ 10) dnjea a§radar oy st do) uo sequnu 30rjploq ayJ, ,

‘p1jos ay) sjuasardar uoi§ar paxoq Jomo] ay tuoidal aseyd-omy “1odea--pinbiy ayy stussardar uoidar paxoq Jaddn oy

0£e0 9IL’0 80¢€°0 6150 P66°0 £CE0
0s8°¢ 6LTY 06T’y [4:144 6LI'S pLES ptjos plos pljos pies pllos plIos pljos 00°l
LEYO P8P 9LEQ $98°0 1§90 65€°0 9610 165°0 LSO 99L°0
0r6°C 109°€ L1IRY [4X4 8L5°€ L6LE 995y 4% 4 Lors 885°S ples plios ples $6°0
€€E0 $STO ${C0 8C0 990 6FL0 0L5°0 98¢°0) 6IP0 9610 s LTR0
9SLT F0S°T ££6'T 068'C 8Y{E PoTE S6T'E €iee 90¢°¢ 1zee 1o+ 090'% pifes 06'0
99¢°0 €eT0 80€°0 850 €140 1600 0170 8€t°0 £1€0 61T0 €60 €CC0 192°0
0] ird FTTT 1S1°T LEET 00sT £TTT (4334 rL9T LPS'T SIF'T £65°T 610°€ eve $8°0
6110 8010 8L1°0 1+C0 S0 reCo PN} w6l 1780 LLTO 910 £81°0 01¥°0
£68°1 6161 LsLl 98’1 S8l 1¥6'1 $26'1 Fe6'l 620°7 1677 6L0°C €6l 44 080
IS4 10C°0 1700 8L1'D NEQ'0 8010 [ax} 1o £90°0 00T0 @lo L300 0E10
P51 x4t 06€°1 €171 IPel ¥81°1 £LT1 [4 74 Lor1 poe'l L8Y'] wi'l S0T'1 0L0
6600 910 L01°0 o 1910 SE10 6500 +90°0 9¢1o £LO0 S01'0 8600 €500
£y 8660 7501 PE60 €L8°0 1060 €780 198°0 16L°0 95L’0 09L0 S8L0 ££8°0 090
6900 1€0°0 F100 690°0 8900 SLO0 00 PEO0 FE00 L¥O0 9100 690°0 S5O0
07L0 £5L°0 £59°0 $69°0 61L°0 6650 $95°0 9090 $95°0 6£S°0 SIS0 pES0 9£S°0 050
8900 LSOO $90°0 1£00 (o 01’0 Fasill] P00 SEO0 £LO0 L1070 6£0°0 8700
Lr9'0 Prso LES0 L8F0 08t°0 09+°0 Tro 06£°0 4140 00v'0 50 9re0 062°0 0%'0
800 £90°0 or00 8C0°0 6+0°0 9t00 00 0t00 0T0'0 <000 LEOO 000 $00°0
€690 6Lv°0 R all 00+'0 98E°0 LIE0 p6T°0 LLTO 6KT0 6570 LST0 [4x 4] L8I0 0£°0
L10°0 LCO0 000 000 1200 1100 0000 £00°0 000 6000 100°0 S00°0 9000
67+'0 16£°0 9LE'0 60€°0 SLTO 900 LTTO 861°0 $61°0 061°0 LLro 44¥1] L8O°0 070
8¢0°0 1200 L1100 8100 €100 CE00 oy 000 1000 0000 6000 0000 100°0
18€°0 19€°0 Lzeo 870 pST0 6770 £61°0 P10 £S1°0 £91°0 wro wre 890°0 Sro
L100 ££00 L000 SO0 1200 <000 £00°0 <000 610°0 L1070 000 00070 <000
se0 61£°0 10£°0 1ST°0 977’0 (4] 081°0 [44%)] 8S1°0 AN Lo 6110 S50°0 01’0
9100 LU0 6000 1000 L1100 80070 S10°0 €100 LIO €000 ST0'0 €000 9000
95€°0 $9£°0 yLTO wTo 607°0 SLI'0 wro 9€1'0 0s1°0 £E€1°0 671°0 o010 6500 €00
o'y 0st 00t 0sc 01¢c 08°l 0s'i 0g'1 €Tl 0c'l ort 001 08°0 o
v
e 10y S nsay uonvmuwig  CA dqe].



1118 Rowley and Painter

1000 time origins, are reported in this table directly below the average
value in normal type.

3. LJ TRANSPORT EQUATIONS

The simulation results, combined with Chapman-Enskog values at
p =0, were used to regress coefficients in equations of the form

b, .
K= Kn"'z Z (T%) (,_l)(/’+)' (8)

i=1 j=1

where K is p*D* for self diffusion and Inn* for shear viscosity; K, is
the Chapman-Enskog low-density value. We have also correlated the
Chapman-Enskog collision integrals as a function of temperature so that
the final equations may be written simply as

N 1 . 6 (p+)i
D 2;7—[ Dn+2 Zbu(—Trm]

i=1 j=1

3 \/F( 6 'l)l
"Dy =2 |— wT") (9)
39 G 8 e /gl

(p*)
t=ny exp[ > Z bj; (T—+)u—n]

i=1 j=1

5 T+ ) -1
Ny = 6 <Z w,-(T*)-"‘> (10)

i=1

Table V. Constants for Use in the Transport Equations

Property i b b b by w,
D, 1 ~2.19672 6.86168 —9.18961 3.8867 3.3667
2 15.6693 —~59.1879 78.9642 —33.6443 —-3.7718
3 —48.8200 200.229 —272.009 117.554 2.6692
4 75.3823 —321.603 441,017 ~192.079 —0.9953
S —55.5212 242752 —335.146 146.837 0.1863
6 15.1673 ~67.8152 943826 —41.6192 -0.0138
n* 1 ~7.53814 36.0319 —47.0432 19.7791 2.8745
2 66.0342 —299.373 430.291 —191.670 —2.2065
3 —220.881 10.67.97 —1575.25 725.006 09158
4 334.883 —1638.92 2445.08 —1140.09 —0.1960
5 —226.756 1112.30 —1669.43 783.084 0.0160
6 52.4394 —255.199 380.704 —176.589 —
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where the coefficients b;, and w; for each property are tabulated in Table V.
These transport equations adequately represent the simulated data over the
domain 0<p* <1.0 and 0.8<T* <4.0. The average absolute deviation
(AAD) between the simulated D values and those correlated by Eq. (10)
was 3.14% (2.06 % excluding points in the two-phase region) and the bias
was +1.85% (+048% excluding points in the two-phase region). For
viscosity, the AAD was 4.34% (4.40% excluding two-phase points) with a
bias of —0.47% (—0.30% excluding two-phase points).

4. EFFECTIVENESS OF THE DEVELOPED TRANSPORT
EQUATIONS

As mentioned, the regressed transport equations should be valid over
the domain bounded by 0<p* <1.0 and 0.8 < T* <4.0; they should not
be used outside that range. The average absolute deviations mentioned
above are probably a reasonable estimate of the uncertainties inherent in
the equations; about 3% for diffusion and about 4.5% for viscosity.

We thought it also informative to compare values calculated from
the various LJ equations with correlations of experimental argon data

Table VL. Percentage Deviation of #, Calculated from Eq. (10). from a Correlation of
Argon Viscosities’ [ 15, 16]

P (bar)
T(K) 1 20 40 100 200 400 600 1000
120 —1.51 0.18 —2.07 —3.51 —295 0.83 — —
(0.0024) (0.7021) (0.7114) (0.7344) (0.7630) (0.8037) (0.8433) (0.8738)
150 —-0.65 —6.60 —5.04 262 321 312 3.56 4.37
(0.0019) (0.0457) (0.1264) (0.5800) (0.6499) (0.7187) (0.7613) (0.8193)
200 0.25 —3.56 —6.68 -6.31 —0.82 6.31 7.69 7.63
(0.0015) (0.0307) (0.0657) (0.2032) (0.4210) (0.5759) (0.6464) (0.7288)
250 0.05 ~2.55 —4.77 —8.56 —17.6l1 1.45 5.80 9.03
(0.0012) (0.0238) (0.0487) (0.1303) (0.2694) (0.4509) (0.5447) (0.6494)
300 —0.31 —2.38 —4.15 —-7.32 —17.55 —-1.01 1.60 6.85
(0.0010) (0.0195) (0.0394) (0.1009) (0.2023) (0.3622) (0.4618) (0.5805)
350 —1.24 —282 —4.06 —6.53 —7.78 —4.42 —0.39 4.32
(0.0008) (0.0166) (0.0333) (0.0837) (0.1650) (0.3013) (0.3983) (0.5226)
400 —1.46 —-2.82 —3.88 —6.06 —7.45 —5.73 —-249 263
(0.0007) (0.0145) (0.0289) (0.0719) (0.1407) (0.2592) (0.3503) (0.4736)
450 —1.59 —2.80 —3.80 —5.93 —742 —6.55 —392 1.44

(0.0006) (0.0128) (0.0256) (0.0633) (0.1233) (0.2283) (0.3133) (0.4334)

“The lower entry is the reduced density corresponding to the given T and P.
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available in the literature. The LJ parameters used for this comparison
were o =3.418 A and g/k=124.0 K [11]. Table VI shows the percentage
deviations of the viscosity equation obtained over a range of densities and
temperatures from correlated argon data [ 15, 16]. The overall AAD and
bias at the compared conditions were 5.3 and —2.2%, respectively. While
this is within the combined uncertainties of the experimental correlation
(about 4%) and the transport equation (4.5%), we do not imply that Ar
is a LJ fluid. Argon densities actually deviate from the LJ equation of state
by about 2% in the liquid region, but the comparison does provide an
independent check on the validity of the new MSD computations.

5. CONCLUSIONS

EMD simulations of the LJ fluid were performed at 171 state points
from which self-diffusion and shear viscosity coefficients were computed
using the MSD or Einstein relations. These simulated values were used to
obtain smoothing equations for the LJ fluid as a function of temperature
and density over the range 0<p* <1.0 and 08<T* <40. The newly
developed LJ transport equations correlated the simulated values adequately
and represent Ar experimental data quite well. We conclude that the
modified Einstein method suggested by Haile [9] is a viable means for
obtaining accurate viscosity values. Finally, we should mention that
thermal conductivity and bulk viscosity can also be calculated from Haile’s
modified Einstein approach.
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